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Description of Work

Newton’s physics was the widely accepted way to interpret movement of bodies,
and the action of gravitational force. However, observations showed that his model
was flawed. His model claimed that gravity was the result of attractive forces between
objects, but this was not the case, and was especially problematic for large-scale com-
putations. Einstein conceptualized the theory of special relativity, which described
the relationship between space and time, and described motion in terms of inertial
frames of reference. He was able to make corrections to Newton’s theory, and a more
accurate model of motion when it approaches light speed. This was still a simplified
model of reality. In general relativity, Einstein takes gravity into account and shows
how gravitational action is actually the warping of space and time caused by mas-
sive objects. Einstein used Riemannian and differential geometry to develop his field
equations, which describe the theory of general relativity. His theory helps to describe
the motion of planetary bodies, black holes, time dilation, and is very important for
modern astrophysics.

This work will present the motivation for general relativity, applications of the
theory, and the Schwarzschild solution for the path of a photon in the presence of a
single massive object.
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1 Historical Background

Throughout time, people have looked up at the heavens and tried to understand the

motion of the planets and stars. Many models were proposed to describe earthly and heavenly

motion. Each model explained earthly and heavenly motion differently, with changing ideas

about the nature of matter and referential frames. Each model had its imperfections and

did not correctly explain or predict observed motion. Einstein’s theory of general relativity

solved many of these problems.

The first ideas about physics are known as the physics of common sense, because they

are based on intuition and observation. [1, p. 11] Aristotle claimed that since the shape of the

shadow by the earth on the moon is roughly circular, the earth must be spherical. [1, p. 12]

He believed that there were four earthly elements, and each object had its own properties

that governed its motion. For example, heavy objects naturally move downward and light

objects naturally move upward. Unless acted on by another force, heavy or light objects

would move in their natural way, towards or away from the center of the earth. [1, p. 13] Since

arrows or canon balls are initially acted on by another force, they may move perpendicular

to the earth for a while, until they are pulled to the earth’s surface.

Aristotle believed that the heavenly bodies, which move around the earth in circles, are

not made of the same elements of earthly bodies. They are composed of aether , which

naturally moves in circular motion, thus explaining the circular motion of heavenly bodies.
[1, p. 14] It was believed, though, that the earth remained still, and did not move; it did not

even rotate about its axis. [1, p. 15]

The Ptolemaic system was a flexible, and complex model of motion. He proposed that

there need not be uniform circular motion. Earth could be set off-center in the circle about

which a planet rotates, which thus would account for the retrograde and variable speed

motion of planets. [1, p. 28] In order to account for the apparent “wandering” of the planets,

Ptolemy’s system included a complicated combination of circles and loops that described

how planets moved in relation to one another. [1, p. 29-31]

Copernicus’s system initially greatly resembled Ptolemy’s. However, he placed the sun,

instead of the Earth, at the center of the universe and proposed that the Earth and other

planets moved about the sun. The apparent motion of the sun, moon, stars, and other

planets, could be explained by their rotation at different speeds about the sun and the Earth’s

daily axial rotation. [1, p. 35] Ptolemy had to make arbitrary assumptions to account for the

observed motion of Mercury and Venus, but Copernicus’s system simplified this. The orbits

of these two planets had to reside within the distance between the sun and Earth, and the

retrograde motion was easily explained. [1, p. 38] His assumptions allowed distances between
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the planets, the scale of the solar system, and the planets’ time of revolution to be computed.

Copernicus’s ideas about gravity, such as how the air around the earth was somehow attached

to the earth, and that each planet kept its spherical shape due to gravitational cohesion,

were not very developed, but helped to develop future theories about universal gravitation

and inertia. [1, p. 48]

Galileo looked up at the heavens with a telescope and made discoveries that overthrew

established notions about the world. Aristotle held that the heavens were unchangeable,

change could only happen on earth. However, Galileo discovered a new star in the constella-

tion Serpentarius, that had not been observed before, thus proving that change occurred in

the heavens. [1, p. 55] He also observed that the moon was not perfectly smooth and spherical,

but had ridges and mountains, similar to the surface of the earth. Thus, the ancients were

wrong in their belief that the heavenly bodies were perfect, and the earth was unique. Like

the other planets, the earth shines, and the planets shine from light reflected from the sun.
[1, p. 64] He also conjectured that the stars must be located at great distances compared to

the other planets, since, when seen through a telescope, the planets are magnified to look

like discs, but the stars are not. [1, p. 64] Galileo’s discoveries proved that Aristotelian and

Ptolemaic systems did not correctly describe the universe. The old physics had to be over-

thrown, and a new physics, that supported the Copernican system, had to be established.
[1, p. 78]

The universality of motion became the accepted view of motion in the seventeenth cen-

tury. Motion occurred everywhere, and it was the same kind of motion everywhere. It was

believed that motion did not depend on location or scale of the object. The laws of motion as

observed on Earth should be applicable to motion of celestial bodies as well. [2, p. 37] The new

laws of motion depended on the idea that nature was uniform everywhere. Kepler expanded

on Aristotle’s earlier ideas about lightness and heaviness of objects, and determined that

the interactions between bodies were due to their respective masses. [2, p. 281] The planets

interacted with the sun, and formed elliptical orbits.

In the Principia, Newton was able to unite the theories of Copernicus, Galileo, and

Kepler, and fill in some of the gaps in their models. Newton’s Laws of Motion became the

widely accepted rules for motion in the universe. Newton set forth new, clear definitions of

mass, momentum, inertia, and forces. His three laws of motion consist of: the law of inertia,

that an object in motion will remain in motion and an object at rest will remain at rest; the

law that acceleration is proportional to force exerted on an object; and the principle of action

and reaction, that when an object is acted on by a force, it will have an equal and opposite

reaction. Gravity was postulated as the universal force, which obeyed the inverse-square

law. The force of gravity between objects was believed to be inversely proportional to the
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square of the distance between two objects.

Newton’s theory required simplifying assumptions and approximations. It was discovered

that there were many difficulties applying the laws that worked on earth to the motion

of heavenly bodies. There was limited agreement between experimental calculations and

observations of the celestial bodies. [3, p. 32] Thinkers following Newton endeavored to derive

the mathematics and mechanical theory necessary to create another such theory that was

more coherent and universal in its applications. [3, p. 33]

Figure 1: Maxwell, [4, p. 24]

In 1865, Maxwell’s mathematical derivations showed that magnets and electrical currents

should be able to produce waves capable of moving through space free of the magnets and

wires that produced them. [5, p. 127] Maxwell’s calculations required that the waves travel at

299,793 kilometers per second, which is the same speed at which light travels. This speed

was first measured in the seventeenth century and was a well-known and accepted quantity.

Nothing about light was used in Maxwell’s derivation, so his discovery resulted in a proposal

that light was a traveling wave of electromagnetic energy. [5, p. 129]

Just like water waves and sound waves require a medium through which to propagate,

water and air respectively, it was believed that electromagnetic waves required a medium as

well. This medium was called the “ether”, and it made up all of space, since light could move

through anywhere.[5, p. 131] Michelson and Morley set out to determine the speed of the earth

by measuring the relative speeds of electromagnetic waves traveling in different directions,

but their experiment resulting in not being able to measure the earth’s speed through the

ether. Einstein would propose that this was because the ether did not exist. Light and

electromagnetic waves travel through a vacuum. [5, p. 134-135]
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2 Einstein’s Theory

2.1 Special Relativity

It was shown that neither electromagnetic nor mechanical phenomena could determine a

state of absolute rest, and so Einstein reasoned that such a state did not exist. In short, his

theory of relativity states that all observers moving at constant speeds, in inertial frames of

reference, will witness the same laws of physics. Someone standing on earth and someone

in a rocket accelerating at 9.8 m/s will witness the same laws of physics because the forces

acting on their frame of reference are the same. In addition, Einstein postulated that the

speed of light is identical for all observers. Experiments showed that light always travelled

at the same speed, no matter the speed of the observer. [5, p. 136]

Einstein’s theory of relativity states that motion is relative to the observer (fig 2) and that

an observer in an inertial reference frame cannot, through experimentation, determine their

speed (fig 3). Since the speed of light is always constant, speeds cannot add as in Newton’s

mechanics. Since there is a“universal speed limit,” the speed of light, if something is moving

at or near the speed of light, we cannot perform the following calculation: uground = c + v,

where u is the speed measured by an observer, and a ball is thrown at the speed of light, c, on

a train traveling at speed v. Instead, the correct measurement is: uground =
utrain + v

1 + vutrain/c2
,

and the “speed limit” is taken into account. [5, p. 140]

2.2 General Relativity

In the general theory, Einstein allows uniform acceleration of reference frames, and takes

gravity into account. [6, p. 114] The curvature of space is, in fact, due to energy and gravita-

tion. Figure 4 illustrates an extension of the special theory, as shown in figure 3. Figure 3

illustrated that one could not test their speed using physics; Figure 4 shows that at constant

acceleration, in a constant gravitational field, one cannot use physics to tell the difference

between the fields, if they are at the same acceleration.

Einstein’s field equations describe the geometry of space-time, which depends on the

amount of gravitating matter in the region under investigation. [8, p. 112] His field equation is
[8, p. 113]:

Gµν = Rµν − 1

2
Rgµν = −8πG/c4T µν

Where,

Gµν is the Einstein tensor

Rµν is the Ricci curvature tensor
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R is the scalar curvature

gµν is the metric tensor

G is the gravitational constant

c is the speed of light

T µν is the stress-energy tensor

The Einstein field equations relates a set of 4×4 tensors, each with 10 individual compo-

nents. They are a system of 10 coupled, nonlinear, partial differential equations, and thus

very difficult to solve.

Figure 2: Motion is relative to the observer [4, p. 66]
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Figure 3: Cannot tell difference between train at rest and at constant velocity [4, p. 124]

Figure 4: Cannot tell difference between elevator at rest and at constant velocity [4, p. 127]
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2.3 Results of general relativity

Mercury’s path around the sun differed very greatly and notably from that predicted

by Newton’s theory. Previously, it was believed that Mercury’s shift in perihelion may

have been due to the gravitational pull of an extra planet between the sun and Mercury.

However, Einstein’s theory showed that the orbit of the planets would shift slightly in the

sun’s gravitational field. Mercury’s perihelion shift was most noticeable due to its proximity

to the sun.

Figure 5: Anomalous shift in perihelion of Mercury [4, p. 164]
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Figure 6: Bending of light near a large mass [4, p. 163]

Though we may observe stars or planets at a given location, due to the effect of the

bending of light near massive objects, stars are actually located in other directions.
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Figure 7: Gravitational lensing [4, p. 163]

Our use of GPS today depends on calculations that derive from general relativity. The

GPS satellites are far from the surface of the earth so their experience of time is slightly

different. Thus, they have to be calibrated to agree with clocks on the earth.

Figure 8: GPS compensates for the effects of general relativity [4, p. 165]
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3 Solving for the Schwarzschild Solution

There is no general solution to Einstein’s equations, so we must investigate specific cases,

in which there is assumed symmetry, and other simplifying assumptions, such as about

distribution of matter. [7, p. 137] The first exact solution was obtained by Karl Schwarzschild

in 1916. He assumed that the metric tensor field was that for a static, spherically symmetric

gravitational field in the empty space-time surrounding a massive spherical object. [8, p. 117]

Schwarzschild assumed that: the field was static; that field was spherically symmetric; the

space-time was empty; the space-time was asymptotically flat. [8, p. 117] He coordinated by

(r, t, θ, ϕ), and proposed the metric, which is described below. [8, p. 117]

Applications of the Schwarzschild solution include perihelion advance, the bending of

light, time delay in radar sounding, and the geodesic effect. [8, p. 123] We can also apply

the Schwarzschild solution to a black hole, in which we have a Schwarzschild radius of a

massive body. [8, p. 152] If a star, or test particle, is near enough to a dense star that has a

Schwarzschild radius, the star will lose mass, which will flow into the dense star. [7, p. 196]

Since the system is rotating, the material will approach the black hole in a spiralic motion.

The matter will lose energy as it is pulled closer and closer to the Schwarzschild radius, until

it is absorbed into the black hole. [7, p. 196]

3.1 The Schwarzschild metric

c2dτ 2 =

(
1 −

rs

r

)
c2dt2 −

(
1 −

rs

r

)−1

dr2 − r2(dθ2 + sin2 θdϕ2)

c2 : speed of light

τ : proper time, time measured by a clock moving along the world line of the test particle

rs : Schwarzschild radius of the massive body

r : the radial coordinate

t : time coordinate, measured by a stationary clock infinitely far from the massive body

θ : the colatitude

ϕ : the longitude
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3.2 The metric tensor matrix


g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44


The metric tensor matrix is used to describe the metric of the system, and is used to

describe the geometry of the space.

gij[f ] = g

(
∂

∂xi
,
∂

∂xj

)

f =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3
,
∂

∂x4

)
=

(
∂

∂t
,
∂

∂r
,
∂

∂θ
,
∂

∂ϕ

)
Using the Schwarzschild metric, we arrive at:

g

(
∂

∂t
,
∂

∂t

)
=

(
1 −

rs

r

)
c2

g

(
∂

∂r
,
∂

∂r

)
= −

(
1 −

rs

r

)−1

g

(
∂

∂θ
,
∂

∂θ

)
= −r2

g

(
∂

∂ϕ
,
∂

∂ϕ

)
= −r2 sin2 θ

And all other values for gij = zero.

Now, the gij matrix =

(
1 −

rs

r

)
c2 0 0 0

0 −

(
1 −

rs

r

)−1

0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ


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And the inverse matrix, gim =

((
1 −

rs

r

)
c2

)−1

0 0 0

0 −

(
1 −

rs

r

)
0 0

0 0 −r−2 0

0 0 0
(
−r2 sin2 θ

)−1


3.3 Christoffel symbols

0 = Γikl =
1

2
gim

(
∂gmk

∂xl
+
∂gml

∂xk
−
∂gkl

∂xm

)
example calculation:

Choose i = 1, and run through k,l,m =1,2,3,4

12



Γ1
11 =

1

2
g1m

(
∂gm1

∂t
+
∂gm1

∂t
−
∂g11

∂xm

)
= 0

m = 1 :
1

2
g11

(
∂g11

∂t
+
∂g11

∂t
−
∂g11

∂t

)
=

1

2

(
1 −

rs

r

)−1


∂

(
1 −

rs

r

)
c2

∂t
+

∂

(
1 −

rs

r

)
c2

∂t
−
∂

(
1 −

rs

r

)
c2

∂t

 = 0

m = 2 :
1

2
g12

(
∂g21

∂t
+
∂g21

∂t
−
∂g11

∂r

)
=

1

2
(0)

0 + 0 −
∂

(
1 −

rs

r

)
c2

∂r

 = 0

m = 3 :
1

2
g13

(
∂g31

∂t
+
∂g13

∂t
−
∂g11

∂θ

)
=

1

2
(0)

0 + 0 −
∂

(
1 −

rs

r

)
c2

∂θ

 = 0

m = 4 :
1

2
g14

(
∂g41

∂t
+
∂g14

∂t
−
∂g11

∂ϕ

)
=

1

2
(0)

0 + 0 −
∂

(
1 −

rs

r

)
c2

∂ϕ

 = 0

13



Γ1
21 = Γ1

12 =
1

2
g1m

(
∂gm1

∂t
+
∂gm1

∂r
−
∂g21

∂xm

)
=

rs

r

2

(
1 −

rs

r

)

m = 1 :
1

2
g11

(
∂g12

∂t
+
∂g11

∂r
−
∂g21

∂t

)
=

1

2

(
1 −

rs

r

)−1(
0 +

rs

r2
c2 − 0

)
=

rs

r
c2

2

(
1 −

rs

r

)
c2

m = 2 :
1

2
g12

(
∂g22

∂t
+
∂g21

∂r
−
∂g21

∂r

)
= 0

m = 3 :
1

2
g13

(
∂g32

∂t
+
∂g23

∂r
−
∂g21

∂θ

)
= 0

m = 4 :
1

2
g14

(
∂g42

∂t
+
∂g24

∂r
−
∂g21

∂ϕ

)
= 0

Γ1
13 = Γ1

31 =
1

2
g1m

(
∂gm1

∂θ
+
∂gm1

∂t
−
∂g13

∂xm

)
= 0

m = 1 :
1

2
g11

(
∂g11

∂θ
+
∂g11

∂t
−
∂g13

∂t

)
= 0

m = 2 :
1

2
g12

(
∂g21

∂θ
+
∂g21

∂t
−
∂g13

∂r

)
= 0

m = 3 :
1

2
g11

(
∂g31

∂θ
+
∂g13

∂t
−
∂g13

∂θ

)
= 0

m = 4 :
1

2
g14

(
∂g41

∂θ
+
∂g14

∂t
−
∂g13

∂ϕ

)
= 0
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Γ1
14 = Γ1

41 =
1

2
g1m

(
∂gm1

∂ϕ
+
∂gm4

∂t
−
∂g41

∂xm

)
= 0

m = 1 :
1

2
g11

(
∂g11

∂ϕ
+
∂g14

∂t
−
∂g41

∂t

)
= 0

m = 2 :
1

2
g12

(
∂g21

∂ϕ
+
∂g24

∂t
−
∂g41

∂r

)
= 0

m = 3 :
1

2
g13

(
∂g31

∂ϕ
+
∂g34

∂t
−
∂g41

∂θ

)
= 0

m = 4 :
1

2
g14

(
∂g41

∂ϕ
+
∂g44

∂t
−
∂g41

∂ϕ

)
= 0

Γ1
22 =

1

2
g1m

(
∂gm2

∂r
+
∂gm2

∂r
−
∂g22

∂xm

)
= 0

m = 1 :
1

2
g11

(
∂g12

∂r
+
∂g12

∂r
−
∂g22

∂t

)
= 0

m = 2 :
1

2
g12

(
∂g22

∂r
+
∂g22

∂r
−
∂g22

∂r

)
= 0

m = 3 :
1

2
g13

(
∂g32

∂r
+
∂g32

∂r
−
∂g22

∂θ

)
= 0

m = 4 :
1

2
g14

(
∂g42

∂r
+
∂g42

∂r
−
∂g22

∂ϕ

)
= 0
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Γ1
23 = Γ1

32 =
1

2
g1m

(
∂gm2

∂θ
+
∂gm3

∂r
−
∂g23

∂xm

)
= 0

m = 1 :
1

2
g11

(
∂g12

∂θ
+
∂g13

∂r
−
∂g23

∂t

)
= 0

m = 2 :
1

2
g12

(
∂g22

∂θ
+
∂g23

∂r
−
∂g23

∂r

)
= 0

m = 3 :
1

2
g13

(
∂g32

∂θ
+
∂g33

∂r
−
∂g23

∂θ

)
= 0

m = 4 :
1

2
g14

(
∂g42

∂θ
+
∂g43

∂r
−
∂g23

∂ϕ

)
= 0

Γ1
24 = Γ1

42 =
1

2
g1m

(
∂gm2

∂ϕ
+
∂gm4

∂r
−
∂g24

∂xm

)
= 0

m = 1 :
1

2
g11

(
∂g12

∂ϕ
+
∂g14

∂r
−
∂g24

∂t

)
= 0

m = 2 :
1

2
g12

(
∂g22

∂ϕ
+
∂g24

∂r
−
∂g24

∂r

)
= 0

m = 3 :
1

2
g13

(
∂g32

∂ϕ
+
∂g34

∂r
−
∂g24

∂θ

)
= 0

m = 4 :
1

2
g14

(
∂g42

∂ϕ
+
∂g44

∂r
−
∂g24

∂ϕ

)
= 0

16



Γ1
33 =

1

2
g1m

(
∂gm3

∂θ
+
∂gm3

∂θ
−
∂g33

∂xm

)
= 0

m = 1 :
1

2
g11

(
∂g13

∂θ
+
∂g13

∂θ
−
∂g33

∂t

)
= 0

m = 2 :
1

2
g12

(
∂g23

∂θ
+
∂g23

∂θ
−
∂g33

∂r

)
= 0

m = 3 :
1

2
g13

(
∂g33

∂θ
+
∂g33

∂θ
−
∂g33

∂θ

)
= 0

m = 4 :
1

2
g14

(
∂g43

∂θ
+
∂g43

∂θ
−
∂g33

∂ϕ

)
= 0

Γ1
34 = Γ1

43 =
1

2
g1m

(
∂gm3

∂ϕ
+
∂gm4

∂θ
−
∂g34

∂xm

)
= 0

m = 1 :
1

2
g11

(
∂g13

∂ϕ
+
∂g14

∂θ
−
∂g34

∂t

)
= 0

m = 2 :
1

2
g12

(
∂g23

∂ϕ
+
∂g24

∂θ
−
∂g34

∂r

)
= 0

m = 3 :
1

2
g13

(
∂g33

∂ϕ
+
∂g34

∂θ
−
∂g34

∂θ

)
= 0

m = 4 :
1

2
g14

(
∂g43

∂ϕ
+
∂g44

∂θ
−
∂g34

∂ϕ

)
= 0
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Γ1
44 =

1

2
g1m

(
∂gm4

∂ϕ
+
∂gm4

∂ϕ
−
∂g44

∂xm

)
= 0

m = 1 :
1

2
g11

(
∂g14

∂ϕ
+
∂g14

∂ϕ
−
∂g44

∂t

)
= 0

m = 2 :
1

2
g12

(
∂g24

∂ϕ
+
∂g24

∂ϕ
−
∂g44

∂r

)
= 0

m = 3 :
1

2
g13

(
∂g34

∂ϕ
+
∂g34

∂ϕ
−
∂g44

∂θ

)
= 0

m = 4 :
1

2
g14

(
∂g44

∂ϕ
+
∂g44

∂ϕ
−
∂g44

∂ϕ

)
= 0

Using the metric tensor above, our Christoffel symbols are:

set i=1, Γ1
kl = 

0

rs

r2

2(1 −
rs

r
)

0 0

rs

r2

2(1 −
rs

r
)

0 0 0

0 0 0 0

0 0 0 0


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set i=2, Γ2
kl =

rs

r2
c2

2(1 −
rs

r
)

0 0 0

0

−

(
rs

r2

)

2(1 −
rs

r
)

0 0

0 0 −r

(
1 −

rs

r

)
0

0 0 0

−

(
1 −

rs

r

)
(2r sin2 θ)

2


set i=3, Γ3

kl = 

0 0 0 0

0 0
1

r
0

0
1

r
0 0

0 0 0 − sin θ cos θ


set i=4, Γ4

kl = 

0 0 0 0

0 0 0
1

r
0 0 0 cot θ

0
1

r
cot θ 0


3.4 Geodesic equation

The geodesic equation describes lines of motion in our metric. These are like straight lines

as we are used to them on Earth. Geodesic lines determine the lines of shortest distance

in curved space. [9, p. 74] The following calculation is used to find the geodesics for the

Schwarzschild solution.
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0 =
∂2ui

∂τ 2
+ Γikl

∂ul

∂τ

∂uk

∂τ

sample calculation:

pick i = 1

0 =
∂2u1

∂τ 2
+ 2Γ1

12

∂u1

∂τ

∂u2

∂τ

0 =
∂2t

∂τ 2
+ 2

rs

r2

2(1 −
rs

r
)

∂t

∂τ

∂r

∂τ

0 =
∂2t

∂τ 2
+

rs

r2

(1 −
rs

r
)

∂t

∂τ

∂r

∂τ

This is the geodesic equation for when i = 1. Our sum is just 2Γ1
12 since Γ1

12 = Γ1
21 by

symmetry of Christoffel symbols of the second kind, and all other values for Γ1
kl = 0.

The geodesic equations for the Schwarzschild metric:

0 =
∂2t

∂τ 2
+
w

v

∂t

∂τ

∂r

∂τ

0 =
∂2r

∂τ 2
+
wc2

2v

(
∂t

∂τ

)2

+
− w

2v

(
∂r

∂τ

)2

+ −v(r sin2 θ)

(
∂ϕ

∂τ

)2

0 = − (sin θ cos θ)

(
∂ϕ

∂τ

)2

0 =
∂2ϕ

∂τ 2
+ 2

(
1

r

)
∂ϕ

∂τ

∂r

∂τ

where w =
rs

r2
and v =

(
1 −

rs

r2

)

These equations can be solved as a system of ordinary differential equations. θ is set to
π

2
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in order to simplify the equations and make them solvable. The metric is used to determine

initial conditions.

3.5 Initial conditions

In order to solve a system of ODEs, we need initial conditions for our variables. The

variables are r, t, ϕ. Since the equations to be solved include second derivatives, initial

conditions are needed for the initial values and first derivatives at τ = 0.

We choose a value for r(0) = r0, in terms of initial distance of the photon from the

Schwarzschild radius, and set

t(0) = 0 and

ϕ(0) = 0.

To solve for
∂r

∂τ
, the equation of a circle, r2 = x2 + y2 is used. Differentiating, we have:

2r
∂r

∂τ
= 2x

∂x

∂τ
+ 2y

∂y

∂τ
. But we know that the initial distance, x, is the same as our initial

radius, r, and initial y = 0, since the initial position is along the x-axis. Thus,
∂r

∂τ
=
∂x

∂τ
.

In terms of coordinates,
∂x

∂τ
= v cosα, where v = velocity of the photon, α is the angle of

initial velocity vector, and cosα =
∂x

∂τ
. We have

∂r

∂τ
= v cosα.

To calculate
∂ϕ

∂τ
, we differentiate the relations cosϕ =

x

r
and sinϕ =

y

r
. We have

−
∂ sinϕ

∂τ
=

r
∂x

∂τ
− x

∂r

∂τ
r2

and
∂ cosϕ

∂τ
=

r
∂y

∂τ
− y

∂r

∂τ
r2

respectively. Using initial values ϕ =

0, x = r, y = 0 tells us that the first equation gives no information and the second equation

yields:

∂ϕ

∂τ
=

∂y

∂r
r

.

The final initial value is solved using the Schwarzschild metric. Rearranging and substi-

tuting, we get:

∂t

∂τ
=

√√√√√√ 1

1 −
rs

r

(
1 +

(cosα)2

rs
r + sin2 α

)
.

Our initial conditions are:
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r(0) = r0

t(0) = 0

ϕ(0) = 0

∂r

∂τ
= v cosα

∂ϕ

∂τ
=

∂y

∂r
r

∂t

∂τ
=

√√√√√√ 1

1 −
rs

r

(
1 +

(cosα)2

rs
r + sin2 α

)

3.6 MATLAB code to solve equations

In order to solve the Schwarzschild solution using the MATLAB ODE solver, all equations

must be solved in terms of y. We define the variables:

r = y1

t = y2

ϕ = y3

∂r

∂τ
= dy1 = y4

∂t

∂τ
= dy2 = y5

∂ϕ

∂τ
= dy3 = y6

∂2r

∂τ 2
= dy4 = y7

∂2t

∂τ 2
= dy5 = y8

∂2ϕ

∂τ 2
= dy6 = y9
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Substituting, the Schwarzschild solution equations are:

0 = y8 +
w

v
y5y6

0 = y7 +
w

2v
c2y25 − v(y1 sin2 θ)y26

0 = −(sin θ cos θ)y26

0 = y9 +
2

y1
y6y4

The third equation gives us no information, and we must solve in terms of y’s. So the

ordinary differential equations to be solved are:

y8 = −
w

v
y5y6

y7 = −
w

2v
c2y25 + v(y1 sin2 θ)y26

y9 = −
2

y1
y6y4

The ODE was solved using MATLAB, plotting the path of a photon, (
∂r

∂τ
,
∂ϕ

∂τ
) and the

Schwarzschild radius. The code and some generated figures follow:

1 function geo

2 %%geodesic equation

3 %venusaur

4 %****set options****

5 options = odeset('RelTol', ...

1e-3,'AbsTol',1e-6,'NormControl','on','MaxOrder',5);

6 %2GM/cˆ2 = r s

7 %***make sure to change RS in function below!!***

8 %1.27e10; %Schwarzschild radius (m) radius of Sagittarius A* (SMBH)

9 %2.95e+3; %Shwarzschild radius (m) of sun

10 RS=8.87e-3; %Schwarzschild radius (m) of earth (radius of earth = ...

6371 m)
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11 v = 299792458; %speed of photon (light) (m/s);

12

13 % ***things to change***

14 r0 = 700000000000000000000000000000000000*RS; %initial radius (m)

15 a = 120; %initial angle of photon (deg)

16 time = 100000000000000000000000000; %time of plot

17

18 % vector of initial conditions:

19 y0=[r0 0 0 v*cosd(a) sqrt( (1/(1-(RS/r0))) * (1 + ...

(cosd(a)ˆ2)/(1-(RS/r0)) ...

20 + sind(a)ˆ2)) v*sind(a)/(r0)];

21 %r0, t0, p0, dr/dT (<dx,dy>), dt/dT, dp/dT

22

23 %solve system using 15s

24 [T,y]= ode15s(@defineODE,[0 time],y0,options);

25 r=[y(:,1)];

26 t=[y(:,2)];

27 p=[y(:,3)];

28 dr=[y(:,4)];

29 dt=[y(:,5)];

30 dp=[y(:,6)];

31

32 %plot the solution for r and p as a function of proper time T.

33 polar(p,r,'b'); %graph of photon path

34 hold on

35

36 xc = 0;

37 yc = 0;

38 theta = linspace(0,2*pi);

39 x = RS*cos(theta) + xc;

40 y = RS*sin(theta) + yc;

41 plot(x,y,'r') %graph of schwarzschild radius

42

43 set(0,'DefaultAxesFontSize',15)

44 xlabel('angle')

45 ylabel('radius');

46 title('path of photon in presence of massive body');

47 legend('path of photon','Schwarzschild horizon');

48 grid on;

49

50 hold off

51

52 function dy = defineODE(T,y)
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53 dy = zeros(length(y0),1);

54 %y1=r %y2=t %y3=phi

55 c = 299792458; %speed of light (m/s)

56 %1.27e+10; %Schwarzschild radius (m) radius of Sagittarius A* ...

(SMBH)

57 %2.95e+3; %Schwarzschild radius (m) of sun

58 RS= 8.87e-3; %Schwarzschild radius (m) of earth

59

60 % theta = pi/2

61 w = (RS/(y(1).ˆ2));

62 v = (1 - (RS./y(1)));

63 dy(1) = y(4);

64 dy(2) = y(5);

65 dy(3) = y(6);

66 dy(4) = (-1.*(w./(2.*v))).*((c).ˆ2).*(y(5)).ˆ2+ ...

67 (w./(2.*v)).*(y(4)).ˆ2-(v.*(y(1).*sin(pi/2).ˆ2).*y(6).ˆ2); % = y(7)

68 dy(5) = (-1.*(w./v)).*y(5).*y(4); % = y(8)

69 dy(6) = (-2/y(1)).*y(6).*y(4); % = y(9)

70

71 end

72 end

3.7 Figures of solution

The following figures were generated by the above MATLAB code, using the Schwarzschild

radius of the earth. The caption gives information about initial radius of photon, r0, initial

angle, α, and observation time, T.
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3.7.1 Non-escape examples
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Figure 9: initial radius = 7×106 rs, initial angle = 90 deg, running time = 1×103
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Figure 10: initial radius = 7×106 rs, initial angle = 120 deg, running time = 1×103
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Figure 11: initial radius = 7×1013 rs, initial angle = 90 deg, running time = 1×104
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Figure 12: initial radius = 7×1013 rs, initial angle = 120 deg, running time = 1×104
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Figure 13: initial radius = 7×1031 rs, initial angle = 90 deg, running time = 1×1025
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3.7.2 Escape examples
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Figure 14: initial radius = 7×106rs, initial angle = 10 deg, running time = 1×103
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Figure 15: initial radius = 7×106rs, initial angle = 40 deg, running time = 1×103
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Figure 16: initial radius = 7×109rs, initial angle = 40 deg, running time = 1×103
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Figure 17: initial radius = 7×1013rs, initial angle = 10 deg, running time = 1×104
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Figure 18: initial radius = 7×1013rs, initial angle = 40 deg, running time = 1×104
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Figure 19: initial radius = 7 ×1034rs, initial angle = 90 deg, running time = 1 ×1024
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Figure 20: initial radius = 7 ×1035rs, initial angle = 120 deg, running time = 1 ×1026

3.7.3 Discussion

From the figures above, we observe that a photon directed towards the Earth at 90 and

120 degrees, from a distance 7× 106 to 7× 1031 times the Schwarszchild radius, or 7× 103m

to 7 × 1027m away from the surface of the earth, will be pulled in to the Earth. It will not

actually be swallowed into the Schwarszchild radius, as illustrated in the images, since the

actual surface of the Earth would inhibit that. However, if we were observing a black hole

with the same properties, the photon would be pulled in to the center of the blackhole.

A photon directed towards the Earth at 10 and 40 degrees, from a distance 7 × 106 to
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7 × 1013 times the Schwarszchild radius, or 7 × 103m to 7 × 1010m away from the surface of

the earth, will escape the pull of Earth’s gravitational field.

We observe interesting motion in figures 20 and 21. In figure 20, a photon is directed

towards the earth at 90 degrees, 7 × 1031m away from the surface of the earth. It makes a

circle around the Earth, which is pulled in to the center slightly. If the figure was observed

for longer, such as 1× 1026 T, the photon’s observed motion becomes chaotic, crossing lines,

but the MATLAB code does not determine that the photon is pulled in to the Earth.

In figure 21, a photon is directed towards the earth at 120 degrees, 7× 1032m away from

the surface of the earth. We observe a spiralic, and the MATLAB code does not determine

that the photon is pulled in to the Earth. Though at smaller radiuses, the 90 and 120 degree

cases were non-escape examples, if the photons are initially far enough from a massive object,

they may not be pulled in to the Schwarzschild radius.

shewn.
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